Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heart valve disease (HVD), a significant cardiovascular complication, is one of the leading global causes of morbidity and mortality. Treatment for HVD often involves medical devices such as bioprosthetic valves. However, the design and optimization of these devices require a thorough understanding of their biomechanical and hemodynamic interactions with patient-specific anatomical structures. Parametric procedural geometry has become a powerful tool in enhancing the efficiency and accuracy of design optimization for such devices, allowing researchers to systematically explore a wide range of possible configurations. In this work, we present a robust framework for parametric and procedural modeling of stented bioprosthetic heart valves and patient-specific aortic geometries. The framework employs non-uniform rational B-splines (NURBS)-based geometric parameterization, enabling precise control over key anatomical and design variables. By enabling a modular and expandable workflow, the framework supports iterative optimization of valve designs to achieve improved hemodynamic performance and durability. We demonstrate its applicability through simulations on bioprosthetic aortic valves, highlighting the impact of geometric parameters on valve function and their potential for personalized device design. By coupling parametric geometry with computational tools, this framework offers researchers and engineers a streamlined pathway toward innovative and patient-specific cardiovascular solutions.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Cardiovascular disease (CVD) remains one of the leading causes of mortality worldwide. Computational medicine and digital twins hold promise in mitigating the impact and prevalence of CVD. Recent advances in image-based computational methods have enabled the quantification of functional and biologically important metrics that would otherwise be difficult to obtain from the standard of care. However, significant challenges remain due to the manual/semi-automated nature of the processes and the domain expertise required to perform them. This paper addresses these challenges by proposing a novel framework that builds on our recently developed direct point cloud-to-CFD approach using immersogeometric analysis. The proposed method leverages advanced auto-segmentation techniques to extract medically relevant geometries as point clouds, which are then directly used for CFD simulations. The framework is validated using benchmark flow problems with analytical and computational solutions and is subsequently applied to patient-specific images to demonstrate its capabilities. The results highlight the method's ability to facilitate rapid CFD simulations directly on point clouds derived from patient scans, underscoring its potential to accelerate the image-to-simulation pipeline and enable the tractability of cardiovascular digital twins.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Point cloud representations of three-dimensional objects have remained indispensable across a diverse array of applications, given their ability to represent complex real-world geometry with just a set of points. The high fidelity and versatility of point clouds have been utilized in directly performing numerical analysis for engineering applications, bypassing the labor-intensive and time-consuming tasks of creating analysis-suitable CAD models. However, point clouds exhibit various levels of quality, often containing defects such as holes, noise, and sparse regions, leading to sub-optimal geometry representation that can impact the stability and accuracy of any analysis study. This paper aims to overcome such challenges by proposing a novel method that expands upon our recently developed direct point cloud-to-CFD approach based on immersogeometric analysis. The proposed method features a mesh-driven resampling technique to fill any unintended gaps and regularize the point cloud, making it suitable for CFD analysis. Additionally, ghost penalty stabilization is employed for incompressible flow to improve the conditioning and stability compromised by the small cut elements in immersed methods. The developed method is validated against standard benchmark geometries and real-world point clouds obtained in-house with photogrammetry. Results demonstrate the proposed framework’s robustness in facilitating CFD simulations directly on point clouds of varying quality, underscoring its potential for practical applications in analyzing real-world structures.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Value-based decision–making involves multiple cortical and subcortical brain areas, but the distributed nature of neurophysiological activity underlying economic choices in the human brain remains largely unexplored. Specifically, the nature of the neurophysiological representation of reward-guided choices, as well as whether they are represented in a subset of reward-related regions or in a more distributed fashion, is unknown. Here, we hypothesize that reward choices, as well as choice-related computations (win probability, risk), are primarily represented in high-frequency neural activity reflecting local cortical processing and that they are highly distributed throughout the human brain, engaging multiple brain regions. To test these hypotheses, we used intracranial recordings from multiple areas (including orbitofrontal, lateral prefrontal, parietal, cingulate cortices as well as subcortical regions such as the hippocampus and amygdala) from neurosurgical patients of both sexes playing a decision-making game. We show that high-frequency activity (HFA; ɣ and HFA) represents both individual choice-related computations (e.g., risk, win probability) and choice information with different prevalence and regional representation. Choice-related computations are locally and unevenly present in multiple brain regions, whereas choice information is widely distributed and more prevalent and appears later across all regions examined. These results suggest brain-wide reward processing, with local HFA reflecting the coalescence of choice-related information into a final choice, and shed light on the distributed nature of neural activity underlying economic choices in the human brain.more » « lessFree, publicly-accessible full text available April 9, 2026
-
Deception is a universal human behavior. Yet longstanding skepticism about the validity of measures used to characterize the biological mechanisms underlying deceptive behavior has relegated such studies to the scientific periphery. Here, we address these fundamental questions by applying machine learning methods and functional magnetic resonance imaging (fMRI) to signaling games capturing motivated deception in human participants. First, we develop an approach to test for the presence of confounding processes and validate past skepticism by showing that much of the predictive power of neural predictors trained on deception data comes from processes other than deception. Specifically, we demonstrate that discriminant validity is compromised by the predictor’s ability to predict behavior in a control task that does not involve deception. Second, we show that the presence of confounding signals need not be fatal and that the validity of the neural predictor can be improved by removing confounding signals while retaining those associated with the task of interest. To this end, we develop a “dual-goal tuning” approach in which, beyond the typical goal of predicting the behavior of interest, the predictor also incorporates a second compulsory goal that enforces chance performance in the control task. Together, these findings provide a firmer scientific foundation for understanding the neural basis of a neglected class of behavior, and they suggest an approach for improving validity of neural predictors.more » « less
-
Otterbring, Tobias (Ed.)Extensive literature probes labor market discrimination through correspondence studies in which researchers send pairs of resumes to employers, which are closely matched except for social signals such as gender or ethnicity. Upon perceiving these signals, individuals quickly activate associated stereotypes. The Stereotype Content Model (SCM; Fiske 2002) categorizes these stereotypes into two dimensions: warmth and competence. Our research integrates findings from correspondence studies with theories of social psychology, asking: Can discrimination between social groups, measured through employer callback disparities, be predicted by warmth and competence perceptions of social signals? We collect callback rates from 21 published correspondence studies, varying for 592 social signals. On those social signals, we collected warmth and competence perceptions from an independent group of online raters. We found that social perception predicts callback disparities for studies varying race and gender, which are indirectly signaled by names on these resumes. Yet, for studies adjusting other categories like sexuality and disability, the influence of social perception on callbacks is inconsistent. For instance, a more favorable perception of signals like parenthood does not consistently lead to increased callbacks, underscoring the necessity for further research. Our research offers pivotal strategies to address labor market discrimination in practice. Leveraging the warmth and competence framework allows for the predictive identification of bias against specific groups without extensive correspondence studies. By distilling hiring discrimination into these two dimensions, we not only facilitate the development of decision support systems for hiring managers but also equip computer scientists with a foundational framework for debiasing Large Language Models and other methods that are increasingly employed in hiring processes.more » « less
An official website of the United States government
